Bee Gardens

from Biodiversity Gardens Capacity Building Workshop with Dr Noraini Bahari

Dr Noraini Bahari is a member of MY Bee Savior. She was a landscape architect at USIM for six years and is currently a senior lecturer at UiTM, Perak.

Bees today

MY Bee Savior Association is an NGO that was established in 2015 to create public awareness of the importance of bee sustainability. It also aims to strengthen the efforts to increase bee populations and to empower corporate commercialisation in the field of bee keeping. Bees are highly important for crop pollination. These bees include Apis mellifera (western honey bee), native to Europe, and Apis cerana (eastern honey bees) which can be found in our country. They are highly managed in hives for crop pollination.

Populations of these agricultural pollinators are declining worldwide. This phenomenon, known as Colony Collapse Disorder, occurs when the majority of worker bees disappear. It first came to the world’s attention with reports of western honey bees disappearance in North America in 2006.  But most beekeepers in European countries (especially in Northern Ireland) experienced a similar phenomenon in 1998, where there was a reported decline of 50% in bee population.

Now, this phenomenon has become global and affects some Asian and African countries as well. This shows the great need to protect, conserve and preserve our bee populations. We have to start worrying now before it is too late. 

The possible causes of Colony Collapse Disorder include climate change, non-native species presence, pesticides and genetically modified crops. Discontinuous supply of flora resources, disease and habitat fragmentation all play a role in the decline of bee populations.

Bees need us. How can we help them?

From the perspective of a landscape architect, one of the ways which can help restore bee populations and preserve their habitat is establishing bee gardens. Cities hold the key to saving bees because cities encompass urban green spaces (UGS), for example, green roofs, public gardens, community gardens, allotments, domestic gardens, etc. The ability of these places to support biodiversity has been recently acknowledged. There is now a call to effectively integrate these UGS in biodiversity planning and management to ensure their full inclusion in biodiversity conservation.

The urban garden is one of the UGS that we are concentrating on now. It is preferred by bees because of the wide range of fruits, vegetables, flowers that can be found in the garden. Many studies find that urban gardens often attract up to ten times more bees than the places we might consider bee havens such as nature reserves, parks, cemeteries and other public green spaces. This is because bees are unable to thrive when there are only trees or turves. Thus, we should try to plant a variety of flowering plants that are richer in pollen and nectar.

Bees provide flowers the vital service of pollination, help us to produce healthy crops and maintain thriving ecosystems, which in turn ensure our health. In simple words, bees are important for the overall health of the environment.

Urban bees

Here are some of the bees that can be found in our cities:

  • honey bees (lebah madu)
  • stingless bees (lebah kelulut)
  • solitary bees (lebah tunggal)
  • bumblebees (lebah dengung)

(among the four types of bee, the bumblebee is perhaps the most glamorous because of the movie Transformers)

Establishing bee gardens in the city

Bees are unique insects. They play a major role in plant pollination due to their absolute dependence on flowers as their source of food. Therefore, bees that live in the cities seek out green spaces like parks and gardens. These green spaces in urban areas provide a proper habitat to the bees, thus helping in the conservation of bees.

When designing a bee garden, the flowers have to be in large patches because these would allow bees to dine at one spot for a long period of time. Otherwise bees would expend too much energy flying from one location to another, leading to stress. In one spot, we ought to have more than two species of plants. Researchers suggest a minimum of ten species of plants to be planted in one spot.

When there is limited space, a vertical bee garden can be one solution. We can use walls or trellis as media to hang the plants. We can also make cool ponds for bees to take water, adding features like pebbles in the water so the bees have something to land on and do not drown.  

Typology of green spaces for bee gardens

There are many types of green spaces in the city. When considered collectively as wider infrastructure, they can create extensive and powerful recreational, cultural or community spaces and improve environmental quality as well as provide diverse and species-rich habitats.

Urban squares attract urbanites to get together and socialise, why not extend this function to let bees to have fun as well? By planting a variety of trees and plants in the planter boxes, and establishing green roofs at the gazebos, we can make urban squares key sites for conserving bee populations. 

Bioswale or rain garden can be turned into ‘Beeswale’ gardens. While managing the stormwater, we can also take care of urban bees.

Vertical walls have an amazing and dramatic appeal. These walls are popping up in major cities all over the world. A large vertical wall can be covered by hundreds of plant species which are good for bees.

Bee pop-up gardens can be established anywhere in the city, even at the roadside or in parks. They beautify the environment while providing foraging habitat for bees in the city. One of the pop-up gardens in Sweden comprises hexagonal structures which act as planting vessels that contain plants and water. These gardens can be incorporated into edible gardens as well.

Other places include rooftops, residential gardens and small individual gardens.

The landscape structure of bee gardens

To sum up, the basic elements for creating bee habitats are softscape, hardscape and water features.

Softscape refers to a composition of native plants with varieties of bee-preferred species. These plants should have flowers that are rich in pollen and nectar. It is good if the plants flower all year round. The plants also have to be intensely fragrant and have vivid colours. Some choices include Cosmos caudatus (ulam raja), Portulaca grandiflora, Angelonia spp, Antigonon leptopus (coral vine or air mata pengantin), Jasminum sambac (jasmine), Nelumbo nucifera (lotus).

Hardscapes or hard structures such as planter beds, boxes or vertical walls support the plants. These structures are useful when you have limited garden space. We can also construct bee houses or bee hotels for solitary bees to rest, lay eggs and raise their young. Although these bees do not produce honey, they are excellent pollinators.

Water features provide fresh water for the bees.


This article is supported by The Habitat Foundation Conservation Grant

You can watch the entire session here.

Pollinators: Bees and Wasps

Often people ask me about how to make their gardens pollinator friendly. This is a tough question, because there are so many different types of pollinators. Guides usually don’t have all of them in one place.

Here, I’ll explain the categories of pollinators that visit plants, as well as the characteristics of the flowers that they pollinate. But be warned that a lot of the plant examples are not exclusively pollinated by a single pollinator. Often, there can be several different pollinators visiting the same type of flower.

To do this, I dug up a bunch of scientific papers and tried to summarise all of it in simple language here. Some of these categories correspond to categories used by scientists, while some have been simplified and combined for the general public.

Since there are so many pollinators I’ve split this up into a few different articles. This one will discuss bees and wasps.

Bees

Bees collect pollen on their hairy bodies and legs. There are 265 valid bee species in Malaysia. 62 species have been recorded in Kuala Lumpur alone (some of these may be undescribed).  Bees can be divided into two guilds: large bees and small bees.

Large bees

These are your typical bees, locally called lebah or sometimes kumbang*. Only honey bees tend to sting, and only if aggressively disturbed. 

They vary greatly in size, from 10mm to 40mm in length. Large bees tend to travel quite long distances in search of flowers, and due to this prefer flowers with more nectar.

Many of these bees are long tongued bees, they have long mouthparts that lets them suck up nectar that is deep in flowers. A subgroup of large bees are the very large carpenter bees, which tend to prefer larger flowers that can support their weight.

Examples: Honey bees (Apis spp.), carpenter bees (Xylocopa spp.), Blue banded bee (Amegilla spp.)

Flower structure: Usually these are not round and are somewhat tube shaped, often with a petal where the bee can land. However they also pollinate or steal pollen from round, shallow flowers by crawling around inside them.

Plants that they pollinate: tomatoes, eggplants, begonia, Senduduk, Coromandel, many wildflowers.

*In the Malay language, carpenter bees are kumbang kayu, although kumbang is also used for beetles.

Small bees

This is a more diverse group of bees, but easily missed due to their small size (2-12mm). They include bees that live in colonies like stingless bees or solitary bees like sweat bees.

These bees are slower fliers with less range than larger bees. Some of these bees have shorter mouthparts and cannot harvest nectar from very deep flowers. They feed primarily on pollen, and therefore tend to prefer shallow round flowers that they can walk in and collect pollen.

Examples: Stingless bees (Heterotrigona spp.; Lepidotrigona spp.; Tetragonula spp.), Sweat bees (Halictidae)

Flower structure: Shallow round flowers which are not tube shaped.

Plants that they pollinate: Basil, lotus, water lily, Lantana, sunflowers, Beggarsticks,

Wasps

Wasps are less furry and much thinner than bees. They can be identified by their thin “wasp waist”. While many are predatory, they sometimes pollinate flowers when they opportunistically feed on nectar or pollen. However they pollinate with less efficiency than bees because they lack the fuzz to trap pollen.

But there are flowers that are adapted to being exclusively pollinated by wasps, although a lot is still unknown about this type of interaction.

Examples: Hover wasps (Liostenogaster spp.), paper wasps (Ropalidia spp.)

Flower structure: Usually these flowers communicate with their pollinators by smell and taste of nectar (some of which cannot be detected by humans).  Some orchids mimic wasps and transfer pollen as the wasp tries to mate the flower.

Plants they pollinate: Some species of Orchids such as Coelogyne sp., usually these have greenish-yellow colours.  At the moment I can’t find any records of Malaysian plants being pollinated by non-fig wasps. (Any help on this would be appreciated)

Fig wasps

Fig wasps are an example of a keystone species that nobody thinks about. Without fig wasps the fruiting events of figs which sustain most birds in urban settings would not be possible. The reason being that fig wasps are the exclusive pollinator of figs.

Fig flowers grow inwards, forming round structures called synconium. The synconium has a small hole in it that is just big enough for a fig wasp to enter. Female fig wasps lay eggs within fig flowers, while also pollinating the flower so it produces a fruit structure that the larva can feed on. The new females emerge, mate with wingless males, pick up pollen and escape the fig fruit to continue the cycle.

Examples: Fig wasp (Ceratosolen spp.)

Flower structure: Synconium. Flowers that grow inwards and look like round fruit.

 Plants they pollinate: Figs

References:

Cheng, J., Shi, J., Shangguan, F. Z., Dafni, A., Deng, Z. H., & Luo, Y. B. (2009). The pollination of a self-incompatible, food-mimic orchid, Coelogyne fimbriata (Orchidaceae), by female Vespula wasps. Annals of Botany, 104(3), 565-571.

Weiblen, G. D. (2002). How to be a fig wasp. Annual review of entomology, 47(1), 299-330.

Ascher, J.S., and Pickering, J. 2020. Discover Life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). Available from http://www.discoverlife.org/mp/20q?guide=Apoidea_species [accessed 8 May 2020].


This article is supported by The Habitat Foundation Conservation Grant